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1  Scope of the Chapter
This chapter is concerned with the following tasks.
(a) Calculating the discrete Fourier transform of a sequence of real or complex data values.

(b) Calculating the discrete convolution or the discrete correlation of two sequences of real data values
using discrete Fourier transforms.

2 Background to the Problems
2.1 Discrete Fourier Transforms
2.1.1 Complex transforms

Most of the functions in this chapter calculate the finite discrete Fourier transform (DFT) of a sequence

of n complex numbers z;, for j=0,1,...,n — 1. The transform is defined by

X j 27k

zk:\/—ﬁ;zjexp<—z - > (1)
for k=0,1,...,n — 1. Note that equation (1) makes sense for all integral k& and with this extension 2, is

T . . . . . . . 1
periodic with period n, i.e., 2, = 2,4, and in particular z_,, = 2,,_,. Note also that the scale-factor of \/—_
n

1
may be omitted in the definition of the DFT, and replaced by — in the definition of the inverse.
n

If we write z; = z; + 1y, and z; = a;, + tby, then the definition of 2;, may be written in terms of sines and

cosines as
1 & < <27rjk:> . [2mjk
ap =—= T;cos| —— | +y;sin <—>)
vn ; n J n

1 2mik (27
b, = —— cos[ZMEY _ 4 osin(ZTE) ).
I \/ﬁ]-z:()(yJCOS( n > x]sm< o ))

The original data values z; may conversely be recovered from the transform 2; by an inverse discrete
Fourier transform:

1 i . +,27rjk ?
i = —= Z1. €X 1
! \/ﬁk',:O L n

for j=0,1,...,n — 1. If we take the complex conjugate of (2), we find that the sequence z; is the DFT

of the sequence 2;,. Hence the inverse DFT of the sequence 2, may be obtained by taking the complex
conjugates of the 2;; performing a DFT, and taking the complex conjugates of the result. (Note that the
terms forward transform and backward transform are also used to mean the direct and inverse transforms
respectively.)

The definition (1) of a one-dimensional transform can easily be extended to multi-dimensional transforms.
For example, in two dimensions we have

. 1 1 < _27rj1k1> < .27rj2k2>
Zleiky — Z;5 €Xpl —t—— | &Xp| —t—— |-
172 mhzo 1220 12 n ny

Note: definitions of the discrete Fourier transform vary. Sometimes (2) is used as the definition of the
DFT, and (1) as the definition of the inverse.
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2.1.2 Real transforms

If the original sequence is purely real valued, i.e., z; = x;, then

. , 1 2mjk
zk:ak+zbk:\/—ﬁ g x]-exp(z 7;7 )
=0

and z,_,, is the complex conjugate of 2;,. Thus the DFT of a real sequence is a particular type of complex
sequence, called a Hermitian sequence, or half-complex or conjugate symmetric, with the properties

Qg =a by =—b, by=0
and, if n is even, b, = 0.

Thus a Hermitian sequence of n complex data values can be represented by only n, rather than 2n,
independent real values. This can obviously lead to economies in storage, with one scheme being used in
this chapter. In this scheme, which will be referred to as the real storage format for Hermitian sequences,
the real parts a;, for 0 < k < n/2 are stored in normal order in the first n/2 + 1 locations of an array x of
length n; the corresponding non-zero imaginary parts are stored in reverse order in the remaining locations
of x. To clarify, if x is declared with bounds (0:n — 1) in your calling function, the following two tables
illustrate the storage of the real and imaginary parts of 2, for the two cases: n even and n odd.

If n is even then the sequence has two purely real elements and is stored as follows:

Index of x | O 1 2 o m/2 0| n=2 n—1
Sequence ap | ap by | agtaby | oo | up | e | @ — by | @y — by
Stored values | ag a; ap v | A |- b, by
x[k] = ay, for k=0,1,...,n/2, and

x[n—k|=b,, fork=1,2,...,n/2—-1.

If n is odd then the sequence has one purely real element and, letting n = 2s + 1, is stored as follows:

Index of x 0 1 2 S s+1 e | n=2 n—1
Sequence ag | ap+by | ay by | ... | ag by | ag—bg | ... | ay — by | ap — by
Stored values | ag a a, . a b, . b, by
x[k] = ay, for k=0,1,...,s, and

x[n—kl=b,, fork=12,...,s.

Also, given a Hermitian sequence, the inverse (or backward) discrete transform produces a real sequence.

That is,
n/2—1 . .
1 2wk . (2mjk
T = _\/ﬁ (ao +2 ;;:1 <akcos( - ) — b, s1n<—n )) + an/2>

where a,,, =0 if n is odd.

2.1.3 Real symmetric transforms

In many applications the sequence x; will not only be real, but may also possess additional symmetries
which we may exploit to reduce further the computing time and storage requirements. For example, if the
sequence x; is odd, (z; = —x,_;), then the discrete Fourier transform of x; contains only sine terms.
Rather than compute the transform of an odd sequence, we define the sine transform of a real sequence

by
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R 2 n-l . (mik
X = \/;;x]—mn(n),

which could have been computed using the Fourier transform of a real odd sequence of length 2n. In this
case the x; are arbitrary, and the symmetry only becomes apparent when the sequence is extended.
Similarly we define the cosine transform of a real sequence by

) 2 & ik
&= \/%Gxo + Zaz]— cos <%> + %(—l)kxn>
=1

which could have been computed using the Fourier transform of a real even sequence of length 2n.

In addition to these ‘half-wave’ symmetries described above, sequences arise in practice with ‘quarter-
wave’ symmetries. We define the quarter-wave sine transform by

(i% ( an_1)>+%(—1)klfﬁn>

which could have been computed using the Fourier transform of a real sequence of length 4n of the form
(valv s Ty L1y - 7'7:1707 Ty Ty T 1y _xl)'

Similarly we may define the quarter-wave cosine transform by

<2330 +§xjcos< J2k = 1)>>

which could have been computed using the Fourier transform of a real sequence of length 4n of the form

(anxla"'axn—1707 _xn—lw",_an_mla"'7_I71—1709$7L—1a"'7x1>'

2.1.4 Fourier integral transforms

The usual application of the discrete Fourier transform is that of obtaining an approximation of the Fourier
integral transform

s) :/ f(t) exp(—i2mst) dt
when f(t) is negligible outside some region (0,c). Dividing the region into n equal intervals we have
n—1
5) = Eij exp(—i2msje/n)
n 4
7=0
and so
n—1
c
= — ; —12mgk
£S5 pen(-anin

for k=0,1,...,n—1, where f; = f(jc/n) and f), = f(k/c).

Hence the discrete Fourier transform gives an approximation to the Fourier integral transform in the region
s=0to s=n/c

If the function f(¢) is defined over some more general interval (a,b), then the integral transform can still
be approximated by the discrete transform provided a shift is applied to move the point a to the origin.

2.1.5 Convolutions and correlations

One of the most important applications of the discrete Fourier transform is to the computation of the
discrete convolution or correlation of two vectors x and y defined (as in Brigham (1974)) by
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n—1

convolution: z;, = E TiYr—j
J=0

n—1
correlation: wy, = Z T Yy
=0
(Here x and y are assumed to be periodic with period n.)

Under certain circumstances (see Brigham (1974)) these can be used as approximations to the convolution
or correlation integrals defined by

2(s) = /OC z(t)y(s —t) dt

o0

and

w(s) = / Z(t)y(s +1t) dt, —oo < s < o0.
For more general advice on the use of Fourier transforms, see Hamming (1962); more detailed information
on the fast Fourier transform algorithm can be found in Gentleman and Sande (1966) and Brigham (1974).

2.1.6 Applications to solving partial differential equations (PDEs)

A further application of the fast Fourier transform, and in particular of the Fourier transforms of symmetric
sequences, is in the solution of elliptic PDEs. If an equation is discretised using finite differences, then it
is possible to reduce the problem of solving the resulting large system of linear equations to that of solving
a number of tridiagonal systems of linear equations. This is accomplished by uncoupling the equations
using Fourier transforms, where the nature of the boundary conditions determines the choice of transforms
— see Section 3.3. Full details of the Fourier method for the solution of PDEs may be found in
Swarztrauber (1977) and Swarztrauber (1984).

3 Recommendations on Choice and Use of Available Functions

3.1 One-dimensional Fourier Transforms

The choice of function is determined first of all by whether the data values constitute a real, Hermitian or
general complex sequence. It is wasteful of time and storage to use an inappropriate function.

Two groups, each of three functions, are provided in real storage format.

Group 1 Group 2
Real sequences nag_fft real (cO6eac) nag_fft multiple real (c06fpc)
Hermitian sequences nag_fft hermitian (cO6ebc) nag_fft multiple hermitian (c06fqc)

General complex sequences nag fft complex (cO6ecc) nag fft multiple complex (c06frc)

Group 1 functions each compute a single transform of length n, without requiring any extra working
storage. The Group 1 functions impose some restrictions on the value of n, namely that no prime factor of
n may exceed 19 and the total number of prime factors (including repetitions) may not exceed 20 (though

the latter restriction only becomes relevant when n > 10°).

Group 2 functions are all designed to perform several transforms in a single call, all with the same value of
n. They are designed to be much faster than the Group 1 functions on vector-processing machines. They
do however require more working storage. Even on scalar processors, they may be somewhat faster than
repeated calls to Group 1 functions because of reduced overheads and because they pre-compute and store
the required values of trigonometric functions. Group 2 functions impose no practical restrictions on the
value of n; however, the fast Fourier transform algorithm ceases to be ‘fast’ if applied to values of n which
cannot be expressed as a product of small prime factors. All the above functions are particularly efficient
if the only prime factors of n are 2, 3 or 5.

If extensive use is to be made of these functions, users who are concerned about efficiency are advised to
conduct their own timing tests.
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To compute inverse (backward) discrete Fourier transforms the functions should be used in conjunction
with the utility functions nag conjugate hermitian (c06gbc), nag_conjugate complex (cO6gcc) and
nag_multiple conjugate hermitian (c06gqc) which form the complex conjugate of a Hermitian or general
sequence of complex data values.

3.2 Half- and Quarter-wave Transforms

Four functions are provided for computing fast Fourier transforms (FFTs) of real symmetric sequences.
nag_fft multiple sine (cO6hac) computes multiple Fourier sine transforms, nag fft multiple cosine
(c06hbc) computes multiple Fourier cosine transforms, nag fft multiple qtr sine (cO6hcc) computes
multiple quarter-wave Fourier sine transforms, and nag_ fft multiple qtr cosine (cO6hdc) computes
multiple quarter-wave Fourier cosine transforms.

3.3 Application to Elliptic Partial Differential Equations
As described in Section 2.1, Fourier transforms may be used in the solution of elliptic PDEs.

nag fft multiple sine (cO6hac) may be used to solve equations where the solution is specified along the
boundary.

nag_fft multiple cosine (cO6hbc) may be used to solve equations where the derivative of the solution is
specified along the boundary.

nag fft multiple qtr sine (cO6hcc) may be used to solve equations where the solution is specified on the
lower boundary, and the derivative of the solution is specified on the upper boundary.

nag_fft multiple qtr_cosine (cO6hdc) may be used to solve equations where the derivative of the solution
is specified on the lower boundary, and the solution is specified on the upper boundary.

For equations with periodic boundary conditions the full-range Fourier transforms computed by
nag_fft multiple real (c06fpc) and nag_fft multiple hermitian (c06fqc) are appropriate.

3.4 Multi-dimensional Fourier Transforms

The following functions compute multi-dimensional discrete Fourier transforms of complex data:

Real storage Complex storage
2 dimensions nag_fft 2d complex (cO6fuc)
3 dimensions nag_fft 3d (cO6pxc)
any number of dimensions nag_fft multid full (c06pjc)

The real storage format functions store sequences of complex data in two real arrays containing the real
and imaginary parts of the sequence respectively. The complex storage format functions store the
sequences in complex arrays.

Note that complex storage format functions have a reduced parameter list, having no INIT or TRIG
parameters.

nag fft 2d complex (c06fuc) and nag_fft 3d (c06pxc) should be used in preference to nag_fft multid full
(c06pjc) for two- and three-dimensional transforms, as they are easier to use and are likely to be more
efficient, especially on vector processors.

3.5 Convolution and Correlation

nag_convolution real (cO6ekc) computes either the discrete convolution or the discrete correlation of two
real vectors.

4  Index

Complex conjugate,
COMPIEX SEQUEIICE ...eevvivieiienreeieeieieeiesteeieeeesteentesseensesneesseensens nag_conjugate_complex (cO6gcc)
Hermitian SeqUENCE .......cceeveeiereieniieierieieieeee et nag_conjugate_hermitian (cO6gbc)
multiple Hermitian sequences .........c.c.cocceceeeenene nag_multiple_conjugate_hermitian (c06gqgc)

Complex sequence from Hermitian sequences ........ nag_multiple_hermitian_to_complex (cO6gsc)
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Compute trigonometric fUNCHONS .........coceverirereninininenereseseeese e nag_fft_init_trig (c06gzc)
Convolution or Correlation
real vectors,
SPACE-SAVINIZ  ...veeurierereereeereesieeeseeseesereeseessseensseesseessseesseessseensns nag_convolution_real (cO6ekc)
Discrete Fourier Transform
half- and quarter-wave transforms

multiple Fourier cosine transforms ..........ccccccceevecieneenene. nag_fft_multiple_cosine (cO6hbc)
multiple Fourier sine transforms ..........ccccoccevvevenienieniennnnne nag_fft_multiple_sine (cO6hac)
multiple quarter-wave cosine transforms .................. nag_fft_multiple_qtr_cosine (cO6hdc)
multiple quarter-wave sine transforms ...........cc.ccocceeneee nag_fft_multiple_qtr_sine (cO6hcc)

multi-dimensional
complex sequence,
COMPIEX SLOTAZE .vevvvenvieirieireiieieeiieieetesieete e ebeeeee e eneeseeenee nag_fft_multid_full (cO6pjc)
one-dimensional,
multi-variable
complex sequence,
COMPIEX SLOTAZE .vevvvevieeierieiieeierieereeete e seeeeeeeaeseeenees nag_fft_multid_single (cO06pfc)
multiple transforms
complex sequence,

real storage by TOWS ....ccccovceevivieereerierienieseeieenen nag_fft_multiple_complex (cO06frc)
Hermitian sequence,

real storage by rows ......c.cccceevveveevvenieneenenneene. nag_fft_multiple_hermitian (c06fqc)
real sequence,

real Storage bY TOWS .....cccoevveriieiienieniieienieeieeeie e nag_fft_multiple_real (cO06fpc)

single transforms
complex sequence,
space saving,
1AL SLOTAZE .eovvievieiieiieeiieiieteet ettt ettt e e nag_fft_complex (cO6ecc)
Hermitian sequence,
space-saving,
1Al STOTAZE .oovvevieieeiieieeierte e nag_fft_hermitian (cO6ebc)
real sequence,
space-saving,
1AL SLOTAZE .oovvivieniiieieiieie ettt ettt ettt et s saeens nag_fft_real (cO6eac)
three-dimensional
complex sequence,
COMPLEX STOTAZE ..eoveenvieiiiiieieeiteritete ettt sttt nag_fft_3d (c06pxc)
two-dimensional
complex sequence,
1AL STOTAZE .oovvivierieeieiieie ettt et ettt ettt e ae e e st ebeenaenaeeneas nag_fft_2d_complex (cO06fuc)

5 Functions Withdrawn or Scheduled for Withdrawal

None.

6  References
Brigham E O (1974) The Fast Fourier Transform Prentice—Hall

Davies S B and Martin B (1979) Numerical inversion of the Laplace transform: A survey and comparison
of methods J. Comput. Phys. 33 1-32

Fox L and Parker I B (1968) Chebyshev Polynomials in Numerical Analysis Oxford University Press

Gentleman W S and Sande G (1966) Fast Fourier transforms for fun and profit Proc. Joint Computer
Conference, AFIPS 29 563-578

Hamming R W (1962) Numerical Methods for Scientists and Engineers McGraw—Hill

Shanks D (1955) Nonlinear transformations of divergent and slowly convergent sequences J. Math. Phys.
34 1-42

[NP3645/7] c06.7



Introduction — c06 NAG C Library Manual

Swarztrauber P N (1977) The methods of cyclic reduction, Fourier analysis and the FACR algorithm for
the discrete solution of Poisson’s equation on a rectangle SIAM Rev. 19 (3) 490-501

Swarztrauber P N (1984) Fast Poisson solvers Studies in Numerical Analysis (ed G H Golub) Mathematical
Association of America

Swarztrauber P N (1986) Symmetric FFT’s Math. Comput. 47 (175) 323-346

Wynn P (1956) On a device for computing the e,,(.S,) transformation Math. Tables Aids Comput. 10
91-96

c06.8 (last) [NP3645/7]



	c06 Introduction
	1 Scope of the Chapter
	2 Background to the Problems
	2.1 Discrete Fourier Transforms
	2.1.1 Complex transforms
	2.1.2 Real transforms
	2.1.3 Real symmetric transforms
	2.1.4 Fourier integral transforms
	2.1.5 Convolutions and correlations
	2.1.6 Applications to solving partial differential equations (PDEs)


	3 Recommendations on Choice and Use of Available Functions
	3.1 One-dimensional Fourier Transforms
	3.2 Half- and Quarter-wave Transforms
	3.3 Application to Elliptic Partial Differential Equations
	3.4 Multi-dimensional Fourier Transforms
	3.5 Convolution and Correlation

	4 Index
	5 Functions Withdrawn or Scheduled for Withdrawal
	6 References

	NAG C Library Manual, Mark 8
	Introduction
	Essential Introduction
	Mark 8 News
	Library Contents
	Withdrawn Routines
	Advice on Replacement Calls for Withdrawn/Superseded Routines
	Online Help

	Indexes
	Keywords in Context
	GAMS Classification Index

	Implementation-specific Information
	a00 - Library Identification
	Chapter Introduction

	a02 - Complex Arithmetic
	Chapter Introduction

	c02 - Zeros of Polynomials
	Chapter Introduction

	c05 - Roots of One or More Transcendental Equations
	Chapter Introduction

	c06 - Fourier Transforms
	Chapter Introduction

	d01 - Quadrature
	Chapter Introduction

	d02 - Ordinary Differential Equations
	Chapter Introduction

	d03 - Partial Differential Equations
	Chapter Introduction

	d06 - Mesh Generation
	Chapter Introduction

	e01 - Interpolation
	Chapter Introduction

	e02 - Curve and Surface Fitting
	Chapter Introduction

	e04 - Minimizing or Maximizing a Function
	Chapter Introduction

	f - Linear Algebra
	Chapter Introduction

	f01 - Matrix Factorizations
	Chapter Introduction

	f02 - Eigenvalues and Eigenvectors
	Chapter Introduction

	f03 - Determinants
	Chapter Introduction

	f04 - Simultaneous Linear Equations
	Chapter Introduction

	f06 - Linear Algebra Support Functions
	Chapter Introduction

	f07 - Linear Equations (LAPACK)
	Chapter Introduction

	f08 - Least-squares and Eigenvalue Problems (LAPACK)
	Chapter Introduction

	f11 - Sparse Linear Algebra
	Chapter Introduction

	f12 - Large Scale Eigenproblems
	Chapter Introduction

	f16 - NAG Interface to BLAS
	Chapter Introduction

	g01 - Simple Calculations on Statistical Data
	Chapter Introduction

	g02 - Correlation and Regression Analysis
	Chapter Introduction

	g03 - Multivariate Methods
	Chapter Introduction

	g04 - Analysis of Variance
	Chapter Introduction

	g05 - Random Number Generators
	Chapter Introduction

	g07 - Univariate Estimation
	Chapter Introduction

	g08 - Nonparametric Statistics
	Chapter Introduction

	g10 - Smoothing in Statistics
	Chapter Introduction

	g11 - Contingency Table Analysis
	Chapter Introduction

	g12 - Survival Analysis
	Chapter Introduction

	g13 - Time Series Analysis
	Chapter Introduction

	h - Operations Research
	Chapter Introduction

	m01 - Sorting
	Chapter Introduction

	s - Approximations of Special Functions
	Chapter Introduction

	x01 - Mathematical Constants
	Chapter Introduction

	x02 - Machine Constants
	Chapter Introduction

	x04 - Input/Output Utilities
	Chapter Introduction



